Lawrence Berkeley National Laboratory

Title:

Experiments with High Energy Polarized Protons

Author:

Chamberlain, O.; Segre, E.; Tripp, R.; Wiegand, C.; Ypsilantis, T.

Publication Date:

01-01-1954

Publication Info:

Lawrence Berkeley National Laboratory

Permalink:

http://escholarship.org/uc/item/01d5k88d

Citation:

Chamberlain, O., Segre, E., Tripp, R., Wiegand, C., \& Ypsilantis, T.(1954). Experiments with High Energy Polarized Protons. Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory. LBNL Paper UCRL-2461. Retrieved from: http://escholarship.org/uc/item/01d5k88d

University of California
eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide.

EXPER ILEATS WITE EIGU ENERGY POLARIZED PROTONS
O. Chamberlain, E. Secre, F. Tripp, C. Wiegand, and T. Ypsilantis Radiation Laboratory, Department of Physios, University of Califormia Berkeley, Califormia

There have been recent reports', 2 on high energy polarised proton beans and their scattering properties. We also have been scattering protons in the Berkeley cyclotron and investigating their polarization by double soattering experiments and we wish to give at this time a progress report because the deta so far collected appear of interest.

The beam is polarized by scattering on target A of beryllium or carbon (Fig. 1) and is deflected by a steering magnet into the shielded experimental area (cave).

The angle of scattering Ψ in e horizontal plane and at target A Varies between 17° and 20° in different experiments. The energy E_{0} of the primary beam is 340 Hev. The acattered beam follows an orbit as draw in Fig. 1 and its energy is approximately $E=E_{0} \cos ^{2} \Psi$ as if it underwent an elastic soattering on a free nucleon. E is measured by a range datermination.

The following experiments show that the beam between targets A and B is polarizeds A second scatterer B. in the cave, soetters the beam by an angle Θ. To completely define the direction of the scattered bean we need also an angle Φ between the plane of the incident and sogttered beam ane the horizontal plane in which Ψ has been measured. For a given θ tine scattered intensity I is a function of Φ end we cell $e(\Theta)=\left[I\left(\Phi=0^{\circ}\right)-I\left(\Phi=180^{\circ}\right)\right] /\left[I\left(\Phi=0^{\circ}\right)+I\left(\Phi=180^{\circ}\right)\right]$.

Using targets A and B of osrbon, meabured values of I at Θ = 25° are as followe, $I\left(\Phi=0^{\circ}\right)=154.1 \pm 4.0 ; I\left(\Phi=90^{\circ}\right)=101.8 \pm 3.7$; $I\left(\Phi=180^{\circ}\right)=59.3 \pm 4.3 ; I\left(\Phi=270^{\circ}\right)=104.7 \pm 3.3$ from which $e=0.39 \pm 0.04$ and $\left[I\left(\Phi=90^{\circ}\right)-I\left(\Phi=270^{\circ}\right)\right] /\left[I\left(\Phi=90^{\circ}\right)+I\left(\Phi=270^{\circ}\right)\right]=0.01 \pm 0.02$, which is a satisfactory check indioating that the polarization is a real effect. When liquid hydrogen was used as scetterer B we found that $\theta(\vartheta)$, where ϑ is the saattering angle in the com. system, is given by the curve of Fig. 2 . It will be noticed that $0\left(90^{\circ}\right.$ c.m. $)$ is consistent with zero as it should be for reasons of aymetry. These checks and an accurate study of the alignment, geometry, and counter properties, which we do not now report, have convinced us that the polarization effect is real. Furthermore we have cheoked that the external beam extracted in the ordinary wey showe no asymmetry with either hydrogen or carbon as target B. (This confirms the fact that our p-p scattering experiments ${ }^{3}$ were not influenced by polerization effeats.)

The absolute intensity of the polarized beam entering the cave was approximately 2×10^{5} protons per second over an area of $5 \mathrm{ow}^{2}$.

In order to use the polarized beam for quantitative measurements we would like to know its degree of polarization $P=\left(F_{+}-F_{-}\right) /\left(F_{+}+F\right)$ where $F_{ \pm}$is the intensity of the protons with spin up or down respectively. If the soatterings in targets A and B were elastio, and the targets were of the same materisi, and if Θ^{\prime} equais Ψ, then P equals $\sqrt{\theta}$ at lesst approximstely. (We neglect the degradation of energy.) At present we have no completely satisfuctory way of knowing the decree of polerization of the beom.

Hunan University (222.247.53.42)-2013/6/13 Download

A curve with targets A and B of carbon is given in PiE. 3. This ourve is obtained with an absorber in the telescope which would eut off protons with an energy maller than $3 / 4$ of the energy $E \cos ^{2} \Theta$ which would obtain in an elastic nucleon nualeon sattering. It shows thet at 30° the polarization is sufficiently smell to have esceped Harshall, Nedzel, and Narshall.

Since in the case of carbon a large part of the soattering might be inelastio, especially at large Θ. it is important to investigate e not only as a function of Θ but also of the energy of the protons detected. We have started this:investigation by taking measurements with various onerey cutoff velues by inserting various absorber thicknesses in our oounter telescope at $\Theta=15^{\circ}$ and 9°. In each orse the lowest energy group of sattered protons (0 to 210 Liv) shows no observable asymmetry. For $\Theta=15^{\circ}$ the intemediate energy group (210 to 280 Nev, quasielastio scattering) gives large asymmetry with $0=0.37 \pm 0.04$, and the elastically scattered protons (290 Mev) indicate $e=0.45 \pm 0.04$. For $\Theta=9^{\circ}$, the elastically soattered protons show $e=0.43 \pm 0.02$.

If the beam polarization P were known, we could determine the polarization in soattering by hydrogen P_{E} from the relation $e_{\mathrm{H}}=P P_{\mathrm{H}}$. If we tentatively assume that $0_{C}=p^{2}$ (even though the carbon soattering is not elastic) then we obtain from the data for $\Psi=\Theta=20^{\circ}$ the result P-0.5. and $P_{\mathrm{HI}}=2$ o - Thas allows a provisional interpretation of the data of Fig. 2. Quite aside from the absolute value of P_{E} its angular distribution is given in Fig. 2 and this indicates a more complex depenaence thar the sin (2ϑ) dependence obtained by considering only s and p-weves.

This wori wes don under the auspices of the Atomic Enerd Comiseion.

Hunan University (222.247.53.42)-2013/6/13 Downioad
(1) Oxley, Cartwright, Rouvina, Baskir, Klein, Foy and Skillmen

Phys. Rev. 21, 419 (1953)
(2) Marshall, Nedzel and Marshall: Bull. Am. Mys. Soo. 28, No. 6, 23 (1953).
(3) Chamberlain, Segre, and Wiegand; Phys. Rev. 83, 923 (1951)

Fig. 1. Plan view of the experimental arrangenent showing the angles Y and θ at the first and second targets. The angle Φ, measurine rotation of the apparatus in the oave around the beam, is equal to zero for the configuretion showa.

Fig. 2. The asymmetry parameter e plotted as a function of the center-of-mass scettering angle ψ for proton-proton scattering at tarcet B. The errors shom include only couting statistios.

Fie. 3. The asymetry parmeter e plotted as a function of the laboratory angle Θ for scatterins from a oarbon target at position E. Different absorbers were used in the counter telescope at different encles as outlined in the text. The arrors show indicete counting etatistioal er:ors.

